File:Drum vibration mode01.gif

From testwiki
Jump to navigation Jump to search

Drum_vibration_mode01.gif(249 × 161 pixels, file size: 200 KB, MIME type: image/gif, looped, 19 frames, 1.9 s)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Description Illustration of vibrations of a drum.
Date (UTC)
Source self-made with MATLAB
Author Oleg Alexandrov
Other versions Derivative works of this file:  Membrane-normal-modes.gif
 
This diagram was created with MATLAB.
Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Source code (MATLAB)

function main()

   k = 0; % k-th asimuthal number and bessel function
   p = 1; % p-th bessel root

   q=find_pth_bessel_root(k, p); 

   N=20; % used for plotting

   % Get a grid
   R1=linspace(0.0, 1.0, N); 
   Theta1=linspace(0.0, 2*pi, N);
   [R, Theta]=meshgrid(R1, Theta1);
   X=R.*cos(Theta);
   Y=R.*sin(Theta);

   T=linspace(0.0, 2*pi/q, N); T=T(1:(N-1));

   for iter=1:length(T);
      
      t = T(iter);
      Z=sin(q*t)*besselj(k, q*R).*cos(k*Theta);

      figure(1); clf; 
      surf(X, Y, Z);
      caxis([-1, 1]);
      shading faceted;
      colormap autumn;

      % viewing angle
      view(108, 42);
      
      axis([-1, 1, -1, 1, -1, 1]);
      axis off;

      H=text(0, -0.3, 1.4, sprintf('(%d, %d) mode', k, p), 'fontsize', 25);

      
      file=sprintf('Frame%d.png', 1000+iter);
      disp(sprintf('Saving to %s', file));
      print('-dpng',  '-zbuffer',  '-r100', file);

      pause(0.1);
   end

   % converted to gif with the command 
   % convert -antialias -loop 10000 -delay 10  -scale 50% Frame10* Drum_vibration_mode01.gif

function r = find_pth_bessel_root(k, p)

   % a dummy way of finding the root, just get a small interval where the root is
   
   X=0.5:0.5:(10*p+1); Y = besselj(k, X);
   [a, b] = find_nthroot(X, Y, p);

   X=a:0.01:b; Y = besselj(k, X);
   [a, b] = find_nthroot(X, Y, 1);

   X=a:0.0001:b; Y = besselj(k, X);
   [a, b] = find_nthroot(X, Y, 1);

   r=(a+b)/2;
   
function [a, b] = find_nthroot(X, Y, n)

   l=0;

   m=length(X);
   for i=1:(m-1)
      if ( Y(i) >= 0  & Y(i+1) <= 0 ) | ( Y(i) <= 0  & Y(i+1) >= 0 )
	 l=l+1;
      end

      if l==n
	 a=X(i); b=X(i+1);

	 %disp(sprintf('Error in finding the root %0.9g', b-a));
	 return;
      end
   end

   disp('Root not found!');

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

12 January 2008

image/gif

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current04:51, 30 March 2023Thumbnail for version as of 04:51, 30 March 2023249 × 161 (200 KB)wikimediacommons>Dndnrmn1Reverted to version as of 05:29, 19 March 2023 (UTC)

The following page uses this file: