This file is from Wikimedia Commons and may be used by other projects.
The description on its file description page there is shown below.
Summary
DescriptionConway's constant.svg
English: The lines show the growth of the numbers of digits in the look-and-say sequences with starting points 23 (red), 1 (blue), 13 (violet), 312 (green). These lines (when represented in a logarithmic scale) tend to straight lines whose slopes coincide with Conway's constant.
Date
Source
Plotted in Maple and converted to SVG format in Inkscape, using the following Maple code:
> with(plots);
> f := proc (n) options operator, arrow; `mod`(n, 10) end proc;
> g := proc (n) options operator, arrow; `mod`(floor((1/10)*n), 10) end proc;
> h := proc (n) if 1 <= evalf(log10(n)) then if f(n) = g(n) then return 1+h(floor((1/10)*n)) else return 1 end if else return 1 end if end proc;
> k := proc (n) if 0 < n then return f(n)+10*h(n)+10^(floor(log10(f(n)+10*h(n)))+1)*k(floor(n/10^h(n))) else return 0 end if end proc;
> sequence := proc (N) local i; for i to 19 do N[i+1] := [][i][2])] end do end proc;
> sequencedigits := proc (N) local i; for i to 20 do N[i][2] := floor(log10(N[i][2])) end do end proc;
> AA := vector(20); AA[1] := [1, 23]; sequence(AA); sequencedigits(AA); a := logplot(AA, color = red);
> BB := vector(20); BB[1] := [1, 1]; sequence(BB); sequencedigits(BB); b := logplot(BB, color = blue);
> CC := vector(20); CC[1] := [1, 13]; sequence(CC); sequencedigits(CC); c := logplot(CC, color = violet);
> DD := vector(20); DD[1] := [1, 312]; sequence(DD); sequencedigits(DD); d := logplot(DD, color = green);
> display(a, b, c, d, view = [1 .. 20, 1 .. 10000]);
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
You may select the license of your choice.
Captions
Add a one-line explanation of what this file represents